<u>Outline</u>

- Minimization
- Karnaugh maps (K-maps)

Karnaugh Maps (K-map)

- A K-map
 - Made up of squares
 - Each square represents a minterm
 - a graphical representation of a Boolean function
 - Alternative algebraic expressions for the same function are derived by recognizing patterns of squares
 - The simplified expressions produced by the map are always in the form of sum of products. (implemented in two-level circuits)
- The K-map can be viewed as
 - A reorganized version of the truth table

Two Variable Maps

• A 2-variable Karnaugh Map:

K-Map and Truth Tables

- The K-Map is just a different form of the truth table.
- Example Two variable function:

F(x,y)=xy

Function Table				у
Input	Function	x	0	1
Values	Value		m_0	m_1
(x,y)	F(x,y)	0		
00	0	ſ	<i>m</i> ₂	<i>m</i> ₃
0 1	0	<i>x</i> { 1		1
10	0	l		
11	1	,		
			(a)	xy

$$\mathbf{G}(\mathbf{x},\mathbf{y}) = \mathbf{m3}$$

K-Map Function Representation

• Example: G(x,y) = x'y+xy'+xy

Functio	n Table	, v
Input Values (x,y)	Function Value F(<u>x,y</u>)	$\begin{array}{cccc} x & y & y \\ x & 0 & 1 \\ 0 & m_1 & y \\ 0 & 1 & y \end{array}$
00	0	$m_2 m_3$
0 1	1	$x \mid 1 \mid 1 \mid 1$
10	1	x
11	1	(b) $x + y$

- G(x,y) = m1+m2+m3
- For G(x,y), two pairs of adjacent cells containing 1's can be combined using the Minimization Theorem:

$$G(x,y) = (x y' + x y) + (x y + x' y) = x + y$$
Duplicate xy

Three Variable K-Map

- Row and Columns
- Any two adjacent squares in the map differ by only one variable
- two pairs of adjacent squares can be combined by removing the disimilar variable m5 + m7

Three Variable K-Map

• $F(x,y,z) = \sum (2,3,4,5)$ $m_3 + m_2 = ?$ $m_4 + m_5 = ?$

 $m_0+m_2=?$ $m_4+m_6=?$

On a 3-variable K-Map:

• Two adjacent squares (2-cell Rectangles) represent a product term with two variables

Three-Variable Maps

• Example Shapes of 2-cell Rectangles:

• Read off the product terms for the rectangles shown

THREE VARIABLE K-MAP

• More practice:

On a 3-variable K-Map:

- Four "adjacent" terms (Rectangles of 4 cells) represent a product term with one variable
- More adjacent squares are combined, obtain a product term with fewer literals

Three-Variable Maps

• Example Shapes of 4-cell Rectangles:

• Read off the product terms for the rectangles shown

Three Variable Maps

- K-Maps can be used to simplify Boolean functions by systematic methods. Terms are selected to cover the "1s"in the map.
- Example: Simplify $F(x, y, z) = \Sigma_m(1, 2, 3, 5, 7)$

THREE VARIABLE MAPS

- F=A'C+A'B+AB'C+BC
- Each produce term can be plotted in the map in one, two, or more squares
- The minterms of the function are then read directly from the map.

>

					$\sqrt{v_2}$			
				WX	\sim	00	01	11
122 -	111.	111 -	111 -		00	m_0 w'x'v'z'	m_1 w' x' v' z	m_3 w' r' v'
<i>m</i> ₀	m_1	<i>m</i> ₃	<i>m</i> ₂		00	W A Y Z	WAY2	W X Y
					_	<i>m</i> ₄	m ₅	<i>m</i> ₇
m_4	m_5	m_7	m_6		01	w'xy'z'	w'xy'z	w'xyz
				i (m ₁₂	m ₁₃	m ₁₅
<i>m</i> ₁₂	<i>m</i> ₁₃	m_{15}	m_{14}		11	wxy'z'	wxy'z	wxyz
				w ł		<i>m</i> ₈	m_9	m ₁₁
m_8	m_9	m_{11}	m_{10}		10	wx'y'z'	wx'y'z	wx'yz
				1 ,				
	(8	a)					(b)	

Four Variable Maps

y

 m_6 w'xyz'

m₁₄ wxyz'

 $\frac{m_{10}}{wx'yz'}$

 $\frac{10}{m_2}$ w'x'yz'

х

Four Variable Maps

- Four variable maps can have rectangles corresponding to:
 - Two adjacent squares = 3 variables,
 - Four adjacent squares = 2 variables
 - Eight adjacent squares = 1 variable,
 - Sixteen adjacent squares = zero variables (i.e. Constant "1")
- The larger the number of squares combined, the smaller is the number of variables

Four-Variable Maps

• Example Shapes of Rectangles:

Four-Variable Maps

• Example Shapes of Rectangles:

Four-Variable Map Simplification

• $F(w,x, y, z) = \sum (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

Four-Variable Map Simplification

• F(A,B,C,D) = A'B'C' + B'CD' + A'BCD' + AB'C'

Simplification Rules

4 Objectives :

- All the minterms of the functions are covered.
- The number of terms in the expression is minimized
- There are no redundant minterms.

Prime Implicant: is a product term obtained by combining the maximum possible number of adjacent squares in the map into a rectangle.

A prime implicant is called an *Essential Prime Implicant* if a minterm in a square is covered by only this prime implicant.

Example of Prime Implicants

• Find ALL Prime Implicants

Optimization Algorithm

- Find <u>all</u> prime implicants.
- Include <u>all</u> essential prime implicants in the solution
- Select a minimum cost set of non-essential prime implicants to cover all minterms not yet covered:
 - Obtaining an optimum solution (There may be more than one way of combining squares)

Example of Prime Implicants

ESSENTIAL Prime Implicants

Optimization Algorithm

- Find <u>all</u> prime implicants.
- Include <u>all</u> essential prime implicants in the solution
- Select a minimum cost set of non-essential prime i mplicants to cover all minterms not yet covered:
 - Obtaining an optimum solution
 - There may be more than one way of combining squares
 - Obtaining a good simplified solution: Use the Selection Rule

Prime Implicant Selection Rule

- Minimize the overlap among prime implicants as much as possible.
- Make sure that each prime implicant selected includes at least one minterm not included in any other prime implicant selected.

Selection Rule Example

• Simplify F(A, B, C, D) given on the K-map.

Minterms covered by essential prime implicants

Don't Cares in K-Maps

- Incompletely specified functions:
- function table or map contains entries
 - the input values for the minterm never occur, or
 - the output value for the minterm is not used
- In these cases, the output value need not be defined
- Instead, the output value is defined as a "don't care"
- Example 1: A logic function having the binary codes for the BCD digits as its inputs. Only the codes for 0 through 9 are used. The six codes, 1010 through 1111 <u>never occur</u>, so the output values for these codes are "x" to represent "don't cares."

- Example 2: A circuit that represents a very common situation that occurs in computer design
 - Input A, B, and C which take on all possible combinations, and
 - a single output Z =1 only for combinations A = 1 and B = 1 or C = 1, otherwise ignoring it.
 - Thus, Z is specified only for those combinations, and for all other combinations of A, B, and C, Z is a don't care. Specifically, Z must be specified for AB + C = 1, and is a don't care for :

AB + C = 0

- By placing "don't cares" (an "x" entry) in the function table or map, the cost of the logic circuit may be lowered.
- Ultimately, each don't care "x" entry may take on either a 0 or 1 value in resulting solutions

Don't Care

- $F(w,x, y, z) = \sum (1, 3, 7, 11, 15)$
- $D(w,x,y,z) = \sum (0, 2, 5)$

EXAMPLE: BCD "5 OR MORE"

• The map below gives a function F1(w,x,y,z) which is defined as "5 or more" over BCD inputs. With the don't cares used for the 6 non-BCD combinations:

$$F1(w,x,y,z) = w + x z + x y$$

This is much lower in cost than F2 where the "don't cares" were treated as "0s."

 $F_2(w, x, y, z) = w x z + w x y + w x y$

Example

• Find the optimum SOP solution:

 $F(A,B,C,D) = \Sigma_m(3,4,6,9,11) + \Sigma_d(2,5,7,10,13)$

Selection Rule Example with Don't Cares

• Simplify F(A, B, C, D) given on the K-map.

