
Fall 2021 – CS1428 Chapter 5.11 - Introduction to C++

Husain Gholoom – Senior Lecturer in Computer Science Page 1

File Input/Output

1. Variables are stored in Main Memory/RAM
a. Values are lost when the program is finished executing

2. To preserve the values computed by the program: save them to a file
3. Files are stored in Secondary Storage
4. To have your program manipulate values stored in a file, they must be input

into variables first.

Reading from or writing to a file in C++ requires 3 basic steps:

1. Open the file.
2. Do all the reading or writing.
3. Close the file.

Header files

To use input and output files , you will need to load file stream header files :

#include <iostream> // I/O Console and Screen output

#include <fstream> // file I/O

File streams are of type ifstream (input) or ofstream (output) a.

ifstream fp_in; // declarations of stream fp_in fp_out

objects of type ifstream can input (read)

values from a file. (like cin)

ofstream fp_out; // declarations of fp_out

objects of type ofstream can output (write)

values to a file. (like cout)

Fall 2021 – CS1428 Chapter 5.11 - Introduction to C++

Husain Gholoom – Senior Lecturer in Computer Science Page 2

Open The Files

fp_in.open("I_File.txt");

fp_out.open("O_file.txt");

• The input file must be created by the programmer.

• If the file “O_File.txt” does not exist, it will be created.

Do all the reading , perform calculations, and do all
the writing

Closing Files

• To close a file stream when you are done reading/writing:

fp_in.close();

fp_out.close();

• Not required, but good practice.

Fall 2021 – CS1428 Chapter 5.11 - Introduction to C++

Husain Gholoom – Senior Lecturer in Computer Science Page 3

Reading from Files

• Use the stream insertion operator : >>

• When opened, file stream's read position points to first character in file.

• Extraction operator (>>) starts at read position and skips whitespace to read

data into the variable.

• The read position then points to whitespace after the value it just read.

Example

int a, b;

fp_in >> a;

cout << a << “ “; // display on the screen

fp_in >> b;

cout << “ “ << b << endl; // display on the

screen

Writing to Files

 Use Output file name along with the stream insertion operator: <<

Example

int a, b;

fp_in >> a;

fp_out << a << “ “; // Print to Output file

fp_in>> b;

fp_out << “ “ << b << endl; // Print to Output

file

Fall 2021 – CS1428 Chapter 5.11 - Introduction to C++

Husain Gholoom – Senior Lecturer in Computer Science Page 4

Complete Example

#include <iostream>

#include <fstream>

using namespace std;

int main()

{

int value, sum;

 double avg;

 ifstream fin; // Input File Definition

 fin.open("InputFile.txt"); // Open fin as an input file

if (!fin)

 {

 cout << endl << endl

 << "***Program Terminated.***" << endl << endl

 << "Input file failed to open." << endl;

 fin.close();

 return 1; } // Quit, but don't return a 0; send back a non-zero value.

 ofstream fout;

 fout.open("OutputFile.txt");

 if (!fout)

 {

 cout << endl << endl

 << " ***Program Terminated.*** " << endl << endl

 << "Output file failed to open." << endl;

 fout.close();

 return 2; } // Quit, but don't return a 0, send back a non-zero value.

 // Beginning of Calculations

 sum = 0;

 fin >> value;

 sum = sum + value;

 fin >> value;

 sum = sum + value;

 avg = static_cast<double>(sum) / 2;

 fout << "The sum of the integer values is: " << sum << endl ;

 fout << "The average of the integer values is : " << avg << endl;

 fin.close(); // Close Input File

fout.close(); // Close Output File

return 0;

}

