
CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 1

Lecture 6 – Data Types , Values and Variables in Python

Understanding Data Types

• In Python, like in all programming languages, data
types are used to classify one particular type of data.

• This is important because the specific data type you
use will determine what values you can assign to it
and what you can do to it (including what operations
you can perform on it).

Numbers

• Any number you enter in Python will be interpreted
as a number; you are not required to declare what
kind of data type you are entering.

• Python will consider any number written without
decimals as an integer (as in 138) and any number
written with decimals as a float (as in 138.0).

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 2

Integers

• Like in math, integers in computer programming are
whole numbers that can be positive, negative, or 0
(…, -1, 0, 1, …).

• An integer can also be known as an int.

• As with other programming languages, you should
not use commas in numbers of four digits or more,
so when you write 1,000 in your program, write it as
1000.

• We can print out an integer in a simple way like this:

>>>
print (-168)

-168
>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 3

• Or, we can declare a variable, which in this case is
essentially a symbol of the number we are using or
manipulating, like :

my_int = -25
print(my_int)

-25
>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 4

Floating-Point Numbers

• A floating-point number or a float is a real number,
meaning that it can be either a rational or an
irrational number.

• Because of this, floating-point numbers can be
numbers that can contain a fractional part, such as
9.0 or -116.42.

• Simply speaking, for the purposes of thinking of a
float in a Python program, it is a number that
contains a decimal point

print (17.5)

17.5

>>>

• We can also declare a variable that stands in for a
float, like :

 my_flt = 17.5
print (my_flt)
17.5
>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 5

Booleans

• The Boolean data type can be one of two values,
either True or False.

print (9 > 6)

True

>>>

• We can also declare a variable that stands in for a
Boolean , like :

my_bool = 5 > 8

print(my_bool)

False

>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 6

Strings

• A string is a sequence of one or more characters
(letters, numbers, symbols) that can be either a
constant or a variable.

• Strings exist within either single quotes ' or double
quotes " in Python.

• So, to create a string, enclose a sequence of
characters in quotes.

print('This is a string in single quotes.')

This is a string in single quotes.
 >>>

print("This is a string in double quotes.")

This is a string in double quotes.
>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 7

• As with other data types, we can store strings in
variables

hw = "Hello, World!"
print(hw)

Hello, World!
>>>

Lists

• A list is a mutable, or changeable, ordered
sequence of elements.

• Each element or value that is inside of a list is
called an item.

• Just as strings are defined as characters between
quotes, lists are defined by having values between
square brackets [].

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 8

A list of integers:
[-3, -2, -1, 0, 1, 2, 3]

A list of floats:
[3.14, 9.23, 111.11, 312.12, 1.05]

A list of strings:
['shark', 'cuttlefish', 'squid', 'mantis shrimp']

If we define our string list as sea_creatures
variable:

sea_creatures = ['shark', 'cuttlefish', 'squid', 'mantis shrimp']

We can print them out by calling the variable:

print(sea_creatures)

['shark', 'cuttlefish', 'squid', 'mantis shrimp']
>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 9

Tuples

• A tuple is used for grouping data. It is an or
unchangeable, ordered sequence of elements.

• Tuples are very similar to lists, but they use
parentheses () instead of square brackets and
because they are unchangeable. Their values
cannot be modified.

• A tuple looks like this:

('blue coral', 'staghorn coral', 'pillar coral')

We can store a tuple in a variable and print it out:

coral = ('blue coral', 'staghorn coral', 'pillar coral')

print(coral)

('blue coral', 'staghorn coral', 'pillar coral')
>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 10

Dictionaries

• The dictionary is Python’s built-in mapping type.
This means that dictionaries map keys to values
and these key-value pairs are a useful way to store
data in Python.

• A dictionary is constructed with curly braces on
either side { }.

• Typically used to hold data that are related.

a dictionary looks like this:

{'name': 'Sammy', 'animal': 'shark', 'color': 'blue',

'location': 'ocean'}

The words to the left of the colons are the keys. Keys can

be made up of any unchangeable data type.

The keys in the dictionary above are: 'name', 'animal',

'color', 'location'.

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 11

The words to the right of the colons are the values. Values can be

comprised of any data type.

The values in the dictionary above are: 'Sammy', 'shark', 'blue',

'ocean'.

Like the other data types, let’s store the dictionary inside a

variable, and print it out:

sammy = {'name': 'Sammy', 'animal': 'shark', 'color': 'blue',

'location': 'ocean'}

print(sammy)

{'name': 'Sammy', 'animal': 'shark', 'color': 'blue', 'location':

'ocean'}

>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 12

If we want to isolate Sammy’s color, we can do so by

calling sammy['color'] and print that out

print(sammy['color'])

blue

>>>

print(sammy['animal'])

shark

>>>

print(sammy['location'])

ocean

>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 13

Variables in Python

The variable name is used to reference a stored

value within a computer program.

my_int = 103204934813

• The variable name (my_int)

• The assignment operator, also known as the equal sign (=)

• The value that is being tied to the variable name

(103204934813)

As soon as we set my_int equal to the value of 103204934813,

we can use my_int in the place of the integer.

print(my_int)

Output will be 103204934813

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 14

Variables can represent any data type, not just integers:

my_string = 'Hello, World!'

my_flt = 45.06

my_bool = 5 > 9

#A Boolean value will return either True or False

my_list = ['item_1', 'item_2', 'item_3', 'item_4']

my_tuple = ('one', 'two', 'three')

my_dict = {'letter': 'g', 'number': 'seven', 'symbol': '&'}

If you print any of the above variables, Python will return

what that variable is equivalent to.

Example :

print(my_string)

 print(my_flt)

 print(my_bool)

 print(my_list)

 print(my_tuple)

 print(my_dict)

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 15

Sample Run

Hello, World!

45.06

False

['item_1', 'item_2', 'item_3', 'item_4']

('one', 'two', 'three')

{'letter': 'g', 'number': 'seven', 'symbol': '&'}

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 16

Naming Variables: Rules and Style

The naming of variables is quite flexible, but there are some

rules you need to keep in mind:

• Variable names must only be one word (as in no spaces)

• Variable names must be made up of only letters, numbers,
and underscore (_)

• Variable names cannot begin with a number.

Example

VALID INVALID WHY INVALID

my_int my-int Hyphens are not permitted

int4 4int Cannot begin with a number

MY_INT $MY_INT Cannot use symbols other than _

another_int another int Cannot be more than one word

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 17

Some notes about style.

CONVENTIONAL UNCONVENTIONAL WHY UNCONVENTIONAL

STYLE STYLE

my_int myInt camelCase not conventional

int4 Int4 Upper-case first

letter not conventional

my_first_string myFirstString camelCase not conventional

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 18

Reassigning Variables

As the word variable implies, Python variables can be changed.

#Assign x to be an integer

x = 76

print(x)

#Reassign x to be a string

x = "Sammy"

print(x)

76

Sammy

>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 19

Multiple Assignment

With Python, you can assign one single value to several variables at

the same time.

This lets you initialize several variables at once, which you can reassign

later in the program yourself, or through user input.

Through multiple assignment, you can set the variables x, y, and z to

the value of the integer 0:

Example

x = y = z = 0

print(x)

print(y)

print(z)

0

0

0

>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 20

Python also allows you to assign several values to several

variables within the same line.

Each of these values can be of a different data type

j, k, l = "shark", 2.05, 15

print(j)

print(k)

print(l)

shark

2.05

15

>>>

Global and Local Variables

When using variables within a program, it is important to keep variable

scope in mind. A variable’s scope refers to the particular places it is

accessible within the code of a given program. This is to say that not all

variables are accessible from all parts of a given program — some

variables will be global and some will be local.

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 21

How To Convert Data Types

• In Python, data types are used to classify one particular type

of data, determining the values that you can assign to the
type and the operations you can perform on it.

• When programming, there are times we need to convert
values between types in order to manipulate values in a
different way.

• For example, we may need to concatenate numeric values
with strings, or represent decimal places in numbers that
were initialized as integer values.

Converting Number Types In Python,

• There are two number data types: integers and floating-

point numbers or floats.

• Python has built-in methods to allow you to easily convert
integers to floats and floats to integers.

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 22

Converting Integers to Floats

float(57)

57.0
>>>

Or

f = 57
print(float(f))

57.0
>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 23

Converting Floats to Integer

int(390.8)

390
>>>

Or

b = 125.0

c = 390.8

print(int(b))

print(int(c))

125
390
>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 24

Converting Strings to Numbers

Strings can be converted to numbers by using the int() and
float() methods.

Here age is a string object
age = "18"
print(age)
Converting string to integer
int_age = int(age)
print(int_age)

float_age = float(age)

print(float_age)

18

18

18.0

>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 25

More about Strings

Recall that Strings exist within either single quotes ' or

double quotes " in Python, so to create a string, enclose

a sequence of characters in quotes.

Example

print("Let's print out this string.")

print('This is Also a String.')

Escape Characters

An escape character lets you use characters that are otherwise impossible to

put into a string. An escape character consists of a backslash (\) followed by the

character you want to add to the string.

For example, the escape character for a single quote is \'. You can use this inside

a string that begins and ends with single quotes. To see how escape characters

work, enter the following into the interactive shell:

Example

print("Let\'s print out this string.")

Let's print out this string.

>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 26

The following are lists of the escape characters you can use

\' Single quote

\" Double quote

\n New Line

\t Tab

\\ Backslash

Example

print("Hello there!\nHow are you?\nI\'m \tdoing \tfine.")

Output

Hello there!

How are you?

I'm doing fine.

>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 27

sep='separator' Optional.

In the print statement , you can specify how to separate the
objects, if there are more than one. The default is ' '

Example

print("Hello", "how are you?", sep=" --- ")

Output

Hello --- how are you?

>>>

Example :

Numbers = [1,2,3]

Chars = ("A","B")

string = "Hi Hello "

print(Numbers , Chars ,string, sep=" << .. >> ")

Output

[1, 2, 3] << .. >> ('A', 'B') << .. >> Hi Hello

>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 28

Raw Strings

A raw string completely ignores all escape characters and

prints any backslash that appears in the string.

Example

print(r'That is Carol\'s cat.')

Output

That is Carol\'s cat.

>>>

Example

print('That is Carol\'s cat.')

Output

That is Carol's cat.

>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 29

end parameter in print() statement

By default Python‘s print() function ends with a newline. How to print

without a newline

Example

print("Welcome to", end = ' ')
print("Python Programming")

Output

Welcome to Python Programming

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 30

Example

print('A','B', sep='', end='')

print('G')

#\n provides new line after printing the year

print('2','1','2023', sep=' - ', end='\n')

print('white','Red', 'Blue' , sep=', ', end=' @ ')

print('Texas')

Output :

ABG

2 - 1 - 2023

white, Red, Blue @ Texas

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 31

Multiline Strings with Triple Quotes

A multiline string in Python begins and ends with either three single

quotes or three double quotes. Any quotes, tabs, or newlines in

between the “triple quotes” are considered part of the string. Python’s

indentation rules for blocks do not apply to lines inside a multiline

string.

Example

print('''Dear Alice,

Eve's cat has been arrested for no reason.

Sincerely,

Bob''')

Sample run

Dear Alice,

Eve's cat has been arrested for no reason.

Sincerely,

Bob

>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 32

Useful String Methods

Several string methods analyze strings or create transformed string

values.

The upper(), lower(), isupper(), and islower() Methods

The upper() and lower() string methods return a new string where all

the letters in the original string have been converted to uppercase or

lowercase, respectively.

Nonletter characters in the string remain unchanged. Enter the following

into the interactive shell:

The isupper() method returns True if all the characters are in

upper case, otherwise False

The islower() method returns True if all the characters are in

lower case, otherwise False.

spam = 'Hello, world!'

spam = spam.upper()

print(spam)

spam = spam.lower()

print(spam)

HELLO, WORLD!

hello, world!

>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 33

From the command line type the following

>>> spam = 'Hello, world!'

>>> spam.islower()

False

>>> spam.isupper()

False

>>> 'HELLO'.isupper()

True

>>> 'abc12345'.islower()

True

>>> '12345'.islower()

False

>>> '12345'.isupper()

False

What is the output of the following

>>> 'Hello'.upper()

>>> 'Hello'.upper().lower()

>>> 'Hello'.upper().lower().upper()

>>> 'HELLO'.lower()

>>> 'HELLO'.lower().islower()

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 34

The isX() Methods

Along with islower() and isupper(), there are several other string

methods that have names beginning with the word is.

These methods return a Boolean value that describes the nature of the

string.

Example :

• isdigit() Returns True if all the characters are digits, otherwise False.

•

• isalpha() Returns True if the string consists only of letters and isn’t

blank

• isalnum() Returns True if the string consists only of letters and numbers

and is not blank

• isdecimal() Returns True if the string consists only of numeric characters

and is not blank

• isspace() Returns True if the string consists only of spaces, tabs, and

newlines and is not blank

• istitle() Returns True if the string consists only of words that begin

with an uppercase letter followed by only lowercase letters

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 35

Enter the following into the interactive shell:

>>> 'hello'.isalpha()

True

>>> 'hello123'.isalpha()

False

>>> 'hello123'.isalnum()

True

>>> 'hello'.isalnum()

True

>>> '123'.isdecimal()

True

>>> ' '.isspace()

True

>>> 'This Is Title Case'.istitle()

True

>>> 'This Is Title Case 123'.istitle()

True

>>> 'This Is not Title Case'.istitle()

False

>>> 'This Is NOT Title Case Either'.istitle()

False

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 36

txt = "50800"

x = txt.isdigit()

print(x)

True

>>>

txt = "6089a"

x = txt.isdigit()

print(x)

False

>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 37

Justifying Text with the rjust(), ljust(), and center()

Methods

The rjust() and ljust() string methods return a padded version of the

string they are called on, with spaces inserted to justify the text.

The first argument to both methods is an integer length for the justified

string.

Example

>>> 'Hello'.rjust(10)

' Hello'

>>> 'Hello'.rjust(20)

' Hello'

>>> 'Hello, World'.rjust(20)

' Hello, World'

>>> 'Hello'.ljust(10)

'Hello '

An optional second argument to rjust() and ljust() will

specify a fill character other than a space character. Enter

the following into the interactive shell:

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 38

Example

>>> 'Hello'.rjust(20, '*')

'***************Hello'

>>> 'Hello'.ljust(20, '-')

'Hello---------------'

The center() string method works like ljust() and rjust() but centers the

text rather than justifying it to the left or right. Enter the following into

the interactive shell:

>>> 'Hello'.center(20)

' Hello '

>>> 'Hello'.center(20, '=')

'=======Hello========'

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 39

What is the output of the following :

movie = "2001: A SAMMY ODYSSEY"

book = "A Thousand Splendid Sharks"

poem = "sammy lived in a pretty how town"

print(movie.islower())

print(movie.isupper())

print(book.istitle())

print(book.isupper())

print(poem.istitle())

print(poem.islower())

