
CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 1

Lecture 13 – Exception

So far you have encountered several kinds of run-time errors, such as
integer division by zero and accessing a list with an out-of-range index.

To this point, all of our run-time errors have resulted in the program’s
termination.

Python provides a standard mechanism called exception handling that
allows programmers to deal with these kinds of run-time errors and
many more.

Rather than always terminating the program’s execution, a program
can detect the problem and execute code to correct the issue or
manage it in other ways.

Many of these potential problems can be handled by the
algorithm itself.

For example, an if statement can test to see if a list index is within the
bounds of the list. However, if the list is accessed at many different
places within a function, the large number of conditionals in place to
ensure the list access safety can quickly obscure the overall logic of the
function. Fortunately, specific Python exceptions are available to cover
problems such as these.

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 2

So, Python handles all errors with exceptions.

An exception is a signal that an error or other unusual condition
has occurred. There are a number of built-in exceptions, which
indicate conditions like reading past the end of a file, or dividing
by zero.

You can also define your own exceptions.

Raising exceptions

Whenever your program attempts to do something erroneous or
meaningless, Python raises exception to such conduct:

>>> 1 / 0

Traceback (most recent call last):

 File "<pyshell#6>", line 1, in <module>

 1/0

ZeroDivisionError: division by zero

This traceback indicates that the ZeroDivisionError exception is
being raised. This is a built-in exception -- see below for a list of
all the other ones.

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 3

Example

x = int(input("\nPlease enter a small positive integer: "))
print("x =", x)

Sample Run

Please enter a small positive integer: Five

Traceback (most recent call last):
 File "<pyshell#18>", line 1, in <module>
 x = int(input("Please enter a small positive integer: "))
ValueError: invalid literal for int() with base 10: 'Five'

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 4

Catching exceptions

In order to handle errors, you can set up exception handling
blocks in your code. You can wrap the code in a try/except
construct.

The keywords try and except are used to catch exceptions.

When an error occurs within the try block, Python looks for a
matching except block to handle it. If there is one, execution
jumps there.

Example

try:

 print (1/0)

except ZeroDivisionError:

 print ("You can't divide by zero. ")

Sample Run

You can't divide by zero.

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 5

Example

try:
 x = int(input("\nPlease enter a small positive integer: "))
 print("x =", x)
except ValueError:
 print("Input cannot be parsed as an integer")

Sample run

Please enter a small positive integer: five
Input cannot be parsed as an integer

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 6

If you don't specify an exception type on the except line, it will
catch all exceptions.

Exceptions can propagate up the call stack.

Example

def f(x):

 return g(x) + 1

def g(x):

 if x < 0:

 raise ValueError

 print("I can't cope with a negative number here.")

 else: return 5

try:

 print (f(-6))

except ValueError:
 print ("That value was invalid.")

In this code, the print statement calls the function f.
That function calls the function g, which will raise an exception of
type ValueError.

Neither f nor g has a try/except block to handle ValueError.

So the exception raised propagates out to the main code, where
there is an exception-handling block waiting for it. This code
prints:

That value was invalid.

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 7

Recovering and continuing with finally

Exceptions could lead to a situation where, after raising an
exception, the code block where the exception occurred might
not be revisited. In some cases, this might leave external
resources used by the program in an unknown state.

finally clause allows programmers to close such resources in

case of an exception.

Example

try:

 result = None

 try:

 result = 1/0

 except ZeroDivisionError:

 print ("division by zero!")

 print ("result is ", result)

finally:

 print ("executing finally clause")

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 8

Sample run

division by zero!

result is None

executing finally clause

// when 1 / 3

result is 0.3333333333333333

executing finally clause

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 9

Example

try:

 result = 1 / 0

except ZeroDivisionError:

 print ("division by zero!")

else:

 print ("result is", result)

finally:

 print ("executing finally clause")

Sample Run

division by zero!

executing finally clause

// when 1 / 3

result is 0.3333333333333333

executing finally clause

>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 10

Examples Of Exceptions :

StandardError

The base class for built-in exceptions. All built-in exceptions are derived

from this class, which is itself derived from the root class Exception.

ArithmeticError

The base class for those built-in exceptions that are raised for various

arithmetic errors: OverflowError, ZeroDivisionError,

FloatingPointError.

LookupError

The base class for those exceptions that are raised when a key or index used

on a mapping or sequence is invalid: IndexError, KeyError.

IOError

Raised when an I/O operation (such as a print statement, the built-in

open() function or a method of a file object) fails for an I/O-related

reason, e.g., ``file not found'' or ``disk full''.

NameError

Raised when a local or global name is not found. This applies only to

unqualified names. The associated value is the name that could not be found.

OverflowError

Raised when the result of an arithmetic operation is too large to be

represented. This cannot occur for long integers (which would rather raise

MemoryError than give up). Because of the lack of standardization of

floating point exception handling in C, most floating point operations also

aren't checked. For plain integers, all operations that can overflow are

checked except left shift, where typical applications prefer to drop bits than

raise an exception.

ZeroDivisionError

Raised when the second argument of a division or modulo operation is zero.

The associated value is a string indicating the type of the operands and the

operation.

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 11

What is the output of the following program

for x in range(10):

 if x > 5:

 raise ValueError("'x'should not exceed 5.")

 print(x)

What is the output of the following program

for x in range(10):

 try:

 if x > 5:

 raise ValueError

 print(x)

 except ValueError:

 print("'x'should not exceed 5.")

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 12

What is the output of the following program

a = [12, 25, 39]

try:

 print ("Second Item = " , (a[1]))

 print ("Fourth Item = " , (a[3]))

except:

 print ("An error occurred")

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 13

What is the output of the following program if

the user entered W followed by Z followed by

12

def main():

 x = get_int()

 print("x is " , x)

def get_int():

 while True:

 try:

 return int(input("What's x? "))

 except ValueError:

 print("x is not an integer")

main()

