
CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 1

Lecture 10 – Functions

A function is a block of instructions that performs an action and,
once defined, can be reused.

Functions make code more modular, allowing you to use the
same code over and over again.

Python has several built-in functions that you may be familiar with,
including:

• print() which will print an object to the terminal

• int() which will convert a string or number data type to an
integer data type

• len() which returns the length of an object

Function names include parentheses and may include
parameters.

Defining Functions without parameters

Let’s start with turning the classic “Hello, World!” program into a
function.

A function is defined by using the def keyword, followed by a
name of your choosing, followed by a set of parentheses
which hold any parameters the function will take (they can be
empty), and ending with a colon.

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 2

For Example

def hello() : # initial statement for creating a function

Next , setup instructions for what the function does. In this
case, printing Hello, World! to the console.

For Example

def hello() : # initial statement for creating a function

print("Hello, World!")

The function is now fully defined.

Finally: Outside of the defined function block, call the function
with hello():

For Example

initial statement for creating a function

def hello() :

print("Hello, World!") # Body of the function

hello() # A statement that is calling the function

When running this program, the following will be produced.

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 3

Hello, World!
>>>

Functions can be more complicated than the hello() function that
was defined above.

For example, within the function block one can use :

• for / while loops

• conditional statements

• input / print statements

Example : Write a function that iterate over the letters in the
name string and displays every character.

Define function names()
def names(): # Set up name variable with input
 name = str(input('Enter University Name: '))

Iterate over name
 for letter in name :
 print(letter)

Calling the function
names()

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 4

Sample Run

Enter University Name: Texas State
T
e
x
a
s

S
t
a
t
e
>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 5

Example : Write a function that displays a letter grade for a score
that is entered from the keyboard

def letterGrade():
 score = int(input("Enter Score "))
 if score >= 90:
 letter = 'A'
 elif score >= 80:
 letter = 'B'
 elif score >= 70:
 letter = 'C'
 elif score >= 60:
 letter = 'D'
 else:
 letter = 'F'
 print("\nYour Letter Grade is " , letter)

letterGrade()

Sample Run

Enter Score 50

Your Letter Grade is F
>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 6

Poem Function Exercise

Write a program, poem.py, that defines a function that
prints a short poem or song verse. Give a meaningful
name to the function. Using a for loop or a while loop
have the program end by calling the function five times, so
the poem or verse is repeated five times.

def friend():
 print("Friend in need is a friend indeed ")

print("Using For loop\n")
for i in range(0 , 5):
 friend()

number = 5
i = 0

print("\n\nUsing While Loop\n")

while (i < number):
 friend()
 i=i+1

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 7

Defining Functions with Parameters

A parameter is a named entity in a function definition, specifying
an argument that the function can accept.

Writ a small program that takes in parameters x, y, and z. Create a
function that adds the parameters together in different configurations. The
sums of these will be printed by the function. Call the function and pass
numbers into the function.

Example

def add_numbers(x, y, z):
 a = x + y
 b = x + z
 c = y + z
 print(a, b, c)

add_numbers(1, 2, 3)

Sample Run

3 4 5
>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 8

In the previous example :

1 in for the x parameter,
2 in for the y parameter,
and 3 in for the z parameter.

These values correspond with each parameter in the order they are given.

The program is doing the following math based on the values that was
passed to the parameters:

a = 1 + 2
b = 1 + 3
c = 2 + 3

The function also prints a, b, and c, and based on the math above

a is equal to 3,
b is equal to 4,
and c is equal to 5.

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 9

Keyword Arguments

In addition to calling parameters in order, a keyword argument in
a function call can be used, in which the caller identifies the
arguments by the parameter name.

For example: create a function that will display profile information
for a user.

Parameters will be passed to the function in the form of username
(intended as a string), and followers (intended as an integer).

def profile_info(username, followers):
 print("Username: " + username)
 print("Followers: " + str(followers))

Within the function definition statement, username and followers
are contained in the parentheses of the profile_info() function.

The block of the function prints out information about the user as
strings, making use of the two parameters.

The function is called, and parameters are assign to it.

profile_info("sammyshark", 945)

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 10

Sample Run

Username: sammyshark
Followers: 945
>>>

Call function with keyword arguments

profile_info(username="AlexAnglerfish", followers=342)

Sample Run

Username: AlexAnglerfish
Followers: 342
>>>

The Complete Program

def profile_info(username, followers):
 print("Username: " + username)
 print("Followers: " + str(followers))

profile_info("sammyshark", 945)

profile_info(username="AlexAnglerfish", followers=342)

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 11

Sample Run

Username: sammyshark
Followers: 945
Username: AlexAnglerfish
Followers: 342
>>>

Modifying the order of the parameters

 Using the same program with a different call:

Change order of parameters

profile_info(followers=820, username="cameroncatfish")

Example

def profile_info(username, followers):
 print("Username: " + username)
 print("Followers: " + str(followers))

profile_info(followers=820, username="cameroncatfish")

Sample Run

Username: cameroncatfish
Followers: 820
>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 12

By using keyword arguments, it does not matter
which order the parameters are passed into the
function call.

Default Argument Values

default values for one or both of the parameters can also be
provided.

For example: Create a default value for the followers
parameter with a value of 1:

Use followers to be 1 if followers parameter was not
passed

def profile_info(username, followers = 1):
 print("Username: " + username)
 print("Followers: " + str(followers))

profile_info(username="JOctopus")
profile_info(username="sammyshark", followers=945)

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 13

Sample Run

Username: JOctopus
Followers: 1
Username: sammyshark
Followers: 945
>>>

What happens if you enter the following :

profile_info(followers=945)

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 14

Functions That Return Values to Main Program

You can pass a parameter value into a function, and a function can also
produce a value.

A function can produce a value with the return statement, which will exit a
function and optionally pass an expression back to the caller. If you use a
return statement with no arguments, the function will return None.

For example , create a program with a function that squares the parameter
x and returns the variable y. A call to print the result variable will be
issued, which is formed by running the square() function with 3 passed into
it.

def square(x):
 y = x ** 2
 return y # use return instead of print.

result = square(3) # the result of power will be stored in the variable
 # result

print(result)

print("\n",square(4)) # the result of power will be returned

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 15

Sample run

9
16
>>>

The integer 9 is returned as output, which is the square of 3.

The integer 16 is returned as output, which is the square of 3.

Comment out the return statement in the program and
observe what happens

def square(x):
 y = x ** 2
 # return y

result = square(3)
print(result)

Sample run

None
>>>

Without using the return statement here, the program
cannot return a value (which is 9) so the value defaults
to None

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 16

Another way of using return

def square(x):

 return x ** 2

result = square(3) # the result of power will be stored in the variable

 # result

print(result)

Sample run

9
>>>

The integer 9 is returned as output, which is the square of 3.

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 17

As another example, modify the previous program that
adds 3 integer numbers so that it return the values back
to the main program

def add_numbers(x, y, z):
 a = x + y
 b = x + z
 c = y + z
 return a, b, c # using return instead of print

sums = add_numbers(1, 2, 3)
print(sums)

Sample run

(3, 4, 5)
>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 18

What is the output of the following program :

def loop_five():
 for x in range(0, 25):
 print(x)
 if x == 5: # Stop function at x == 5
 return
 print("This line will not execute.")

loop_five()

What is the output of the above program if you
replace return with Continue ?

What is the output of the above program if you
replace return with break ?

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 19

What is the output of the following program:

def function_1():
 print("Hello From My Function!")

def function_2(username, greeting):
 print("Hello" , ",", username , ", From My Function!, I wish you " , greeting)

def function_3(username, greeting):
 print("Hello, %s , From My Function!, I wish you %s"%(username,
greeting))

def function_4(a, b):
 return a ** b

function_1()

function_2("Lexi Rob", "a great year!")

function_3("John Doe", "a great year!")

x = function_4(3,3)

x = function_4(2,3)

print(x)

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 20

Functions calling other functions

It is important to understand that each of the functions can be

used and called from other functions. This is one of the most

important ways of take a large problem and break it down into a

group of smaller problems. This process of breaking a problem

into smaller subproblems is called functional decomposition.

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 21

Here’s a simple example of functional decomposition using two

functions. The first function called square simply computes the

square of a given number. The second function called

sum_of_squares makes use of square to compute the sum of

three numbers that have been squared.

def square(x):
 y = x * x
 return y

def sum_of_squares(x, y, z):
 a = square(x)
 b = square(y)
 c = square(z)

 return a + b + c

a = -5
b = 2
c = 10
result = sum_of_squares(a, b, c)
print(result)

Sample Run

129
>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 22

What is the output of this program

def a():
 print('a() starts')
 b()
 d()
 print('a() returns')

def b():
 print('b() starts')
 c()
 print('b() returns')

def c():
 print('c() starts')
 print('c() returns')

def d():
 print('d() starts')
 print('d() returns')

a()

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 23

Local and Global Variables

In Python , If you define a variable within a function
block, you’ll only be able to use that variable within that
function. It is called local variable.

If you would like to use variables across functions it
may be better to declare the variable as a global variable.

Example of using Local Variable in Python :

def sum(x,y):
 sum = x + y
 return sum

print(sum(5, 10))

Sample run

15
>>>

The variables x and y will only work and used inside the
function sum() and they don’t exist outside of the
function.

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 24

So trying to use local variable outside their scope, might
through NameError. For example, If you place print(x) in
the main program your will get the following error and will
not work.

def sum(x,y):
 sum = x + y
 return sum

print(sum(5, 10))

Sample Run

15

def sum(x,y):
 sum = x + y
 return sum

print(x) # will not work and the program terminates

Traceback (most recent call last):
 File "C:\Users\HP\AppData\Local\Programs\Python\Python38-
32\Program1.py", line 6, in <module>
 print(x)
NameError: name 'x' is not defined
>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 25

Example of using Global Variable in Python :

x = 99 # x , y are global
y = 17
def fun(x): # x is local to function fun
 y = 100
 # y is local to function fun
 # which is diff from the Global y

 print (x, y)

fun(77)
print (x, y)

Sample Run

77 100
99 17
>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 26

Example of using Global Variable with the keyword global :

Z = 25
def func():
 global Z # indicates that using the global Z
 # By using the keyword global
 print(Z)
 Z=20 # value of Z is changed

func()
print(Z)

A calling func(), the global variable value Z is changed for the
entire program.

Sample run

25
20
>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 27

Combination of local and global variables and function
parameters

def func(x, y):
 global a
 a = 45
 x,y = y,x # x , y , b , c are local to func
 b = 33
 b = 17
 c = 100
 print(a,b,x,y)

values are visible only in the main program
x , y are different from the x , y that appears in func

a,b,x,y = 3,15,3,4
func(9,81)
print (a,b,x,y)

Sample Run

45 17 81 9
45 15 3 4
>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 28

What is the output of the following program :

variable_1 = 20
variable_2 = 30

def local():

 global variable_1
 variable_2 = 70
 variable_1 = 80

local()
print("the value of global_variable_1 has become", variable_1)
print("the value of global_variable_2 did not change" , variable_2)

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 29

What is the output of the following program :

scale = 10
def doscale(list):
 newlist = []
 for i in list:
 newlist.append(i / scale)
 return newlist

mylist = [1,2,3,4,5]
otherlist = doscale(mylist)
print (otherlist)

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 30

What is the output of this program

total = 100

def test():
 marks = 19
 print('Marks = ', marks)
 print('Total in test before func1 = ', total)
 func1()
 print('Total in test after func1 = ', total)
 func2()
 print('Total in test after func2 = ', total)

def func():
 global total
 if total > 10:
 total = 25
 print('Total in func = ', total)

def func1():
 global total
 total = 15
 func()

def func2():
 global total
 if total <= 30:
 total = 15

def main():
 print('Total in main = ', total)
 test()

main()

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 31

*args : Functions with unknown number of arguments

In Python, the single-asterisk form of *args can be used as a
parameter to send a non-keyworded variable-length argument list
to functions.

For example , look at a typical function that uses two arguments:

def multiply(x, y):

print (x * y)

In the code above :

• function with x and y as arguments is defined,

• and then when the function is called , numbers that
correspond to x and y must be used.

In this case, we will pass the integer 5 in for x and the integer 4 in
for y:

def multiply(x, y):

print (x * y)

multiply(5, 4)

Sample run

20
>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 32

What happens if you call the function as follows :

multiply(5, 4, 3)
or
multiply(5, 4, 3, 2)

The statements multiply(5, 4, 3) or multiply(5, 4, 3, 2)
will produce the following errors :

TypeError: multiply() takes 2 positional arguments but
3 were given

TypeError: multiply() takes 2 positional arguments but
4 were given

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 33

Thus , if more arguments might be used later on , make
the use of *args as the function parameter instead.

Example

def multiply(*args):
 z = 1
 for num in args:
 z *= num
 print(z)

multiply(4, 5)
multiply(10, 9)
multiply(2, 3, 4)
multiply(3, 5, 10, 6)

Sample Run

20
90
24
900
>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 34

With *args you can create more flexible code that
accepts a varied amount of non-keyworded
arguments within the function.

Another example

Function which returns the length of the longest of a variable

number of arguments. The function will accept a collection of

strings as arguments, it will check them all, and return the

maximum length of any of them.

def longlen(*strings):

 max = 0

 for s in strings:

 if len(s) > max:

 max = len(s)

 return max

print(longlen('apple','banana','cantaloupe','cherry'))

print(longlen('seven','six','five','four','three','two'))

Sample Run

10
5
>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 35

In more complex situations, two kinds of special arguments
(variable and single asterisks) can be used in the same
function.

For example

def allargs(one,*args):
 print ('one = ' , one)
 print ('Unnamed arguments:')
 for a in args:
 print ('%s' % str(a))

allargs(12,'Dog','Cat','Horse','Tiger')

Sample run

one = 12
Unnamed arguments:
Dog
Cat
Horse
Tiger
>>>

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science Page 36

Practice

1. Write a Python function to multiply all the numbers in

a list.

2. Write a Python function to check whether a number is

in a given range

3. Write a Python function that accepts a string and

calculate the number of upper-case letters, lower case
letters and digits. The function will return upper,
lower, and digits to the caller. Values are displayed in
the main program

