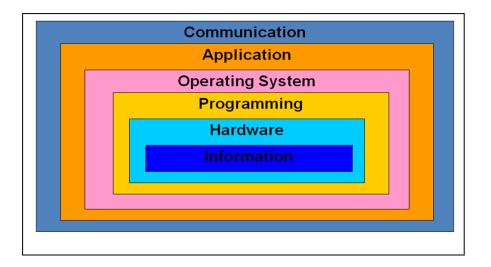
Lecture 1 – Overview - Computer Systems

What is a computer?

A **computer** is an electronic device that manipulates information, or data. It has the ability to **store**, **retrieve**, and **process** data. You may already know that you can use a computer to **type documents**, **send email**, **play games**, and **browse the Web**. You can also use it to edit or create **spreadsheets**, **presentations**, and even **videos**.


Computing systems are dynamic!

- Constant Modification, Revision, Correction of Hardware and Software
- Expansion of Hardware and Software Capabilities
- Maturation and Extension of Concepts
- Simplification of Procedures
- Improvements in Human Computer Interface

Hardware vs. software :

<u>Hardware</u>: The physical elements of a computing system (Mother board, disk drive, memory, controller cards, power supply, communication ports, bus, monitor, keyboard, etc.)

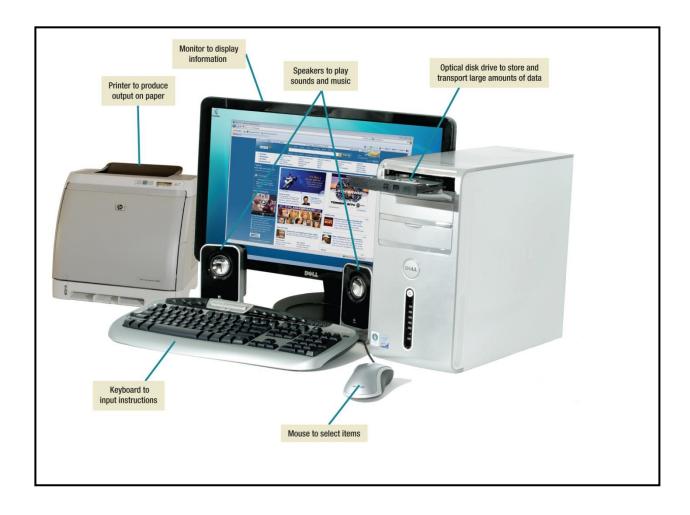
<u>Software</u> : The programs that provide the instructions for a computer to execute (boot program, assembler, compiler, operating system, applications, function library, web browsers, games, word processors, spreadsheets ... etc.)

Layers of a Computing System

Parts of any Information System

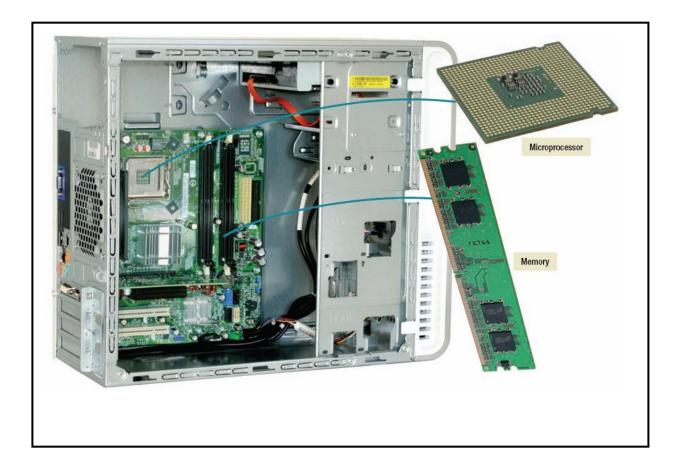
Types of Computers

- Supercomputers
- Mainframe computers
- Minicomputers (or mid-range computers)
- Microcomputers


Microcomputer Types

- o Desktop
- Media center system units
- Notebook or laptop
- \circ Netbooks
- Tablet PC
- \circ Handheld

Microcomputer Hardware


- Four basic categories of equipment:
 - System Unit
 - Input/Output
 - Secondary Storage
 - Communications

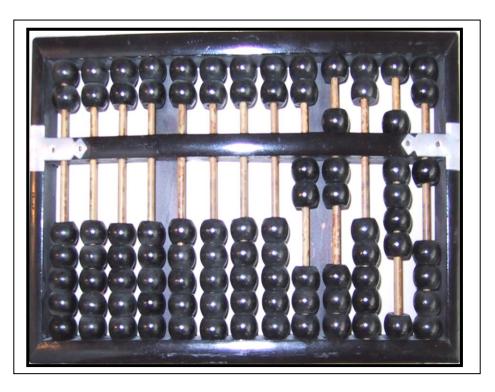
System Unit

o Two important components

- Microprocessor
- Memory

Input/Output Devices

- Common input devices are the keyboard and the mouse
- **o** Common output devices are printers and monitors


Secondary Storage

- Unlike memory, secondary storage <u>holds</u> data and programs even if electrical power is not available
- The most important types of secondary media are hard disks, solid-state storage, and optical disks, flash drives

Early History of Computing


Abacus: A device to record, **add and subtract** numeric values using a modified base 5 notation.

Blaise Pascal

Mechanical device to add, subtract,

divide & multiply

CS 1342 - Husain Gholoom – Senior lecturer in Computer Science

Joseph Jacquard

Jacquard's Loom, the punched card


Ada Lovelace - First Programmer, the loop

Ada Lovelace described and published an algorithm for Charles Babbage's analytical engine to **compute** Bernoulli numbers. It is generally considered the first algorithm ever specifically tailored for implementation on a computer, and for this reason she is considered by many to be the first computer programmer.

Alan Turing - Turing Machine, Artificial Intelligence Testing

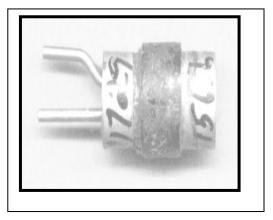
Alan Mathison Turing, 23 June 1912 – 7 June 1954), was an English mathematician, logician, cryptanalyst, and computer scientist. He was highly influential in the development of computer science, giving a formalization of the concepts of ''algorithm'' and ''computation'' with the Turing machine, which can be considered a model of a general purpose computer. Turing is widely considered to be the father of computer science and artificial intelligence.

First Generation Hardware (1951-1959)

Vacuum Tubes Large, not very reliable, generated a lot of heat

Magnetic Drum Memory device that rotated under a read/write head

Card Readers → Magnetic Tape Drives Sequential auxiliary storage devices


CS 1342 - Husain Gholoom – Senior lecturer in Computer Science

Second Generation Hardware (1959-1965)

Transistor

Replaced vacuum tube, fast, small, durable, cheap

Magnetic Cores Replaced magnetic drums, information available instantly

Magnetic Disks Replaced magnetic tape, data can be accessed directly

Third Generation Hardware (1965-1971)

Integrated Circuits - Replaced circuit boards, smaller, cheaper, faster, more reliable.

Transistors - Now used for memory construction **Terminal** - An input/output device with a keyboard and screen

Fourth Generation Hardware (1971-?)

Large-scale Integration - Great advances in chip technology
 PCs, the Commercial Market, Workstations - Personal Computers
 were developed as new companies like Apple and Atari came into
 being. Workstations emerged.

Parallel Computing and Networking

Parallel Computing

Computers rely on interconnected central processing units that increase processing speed.

Networking

With the Ethernet small computers could be connected and share resources. A file server connected PCs in the late 1980s.

ARPANET and LANs → Internet

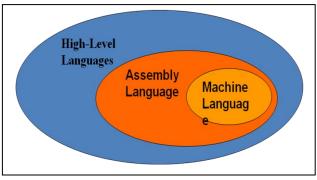
First Generation Software (1951-1959)

Machine Language

Computer programs were written in binary (1s and 0s)

Assembly Languages and translators

Programs were written in artificial programming languages and were then translated into machine language

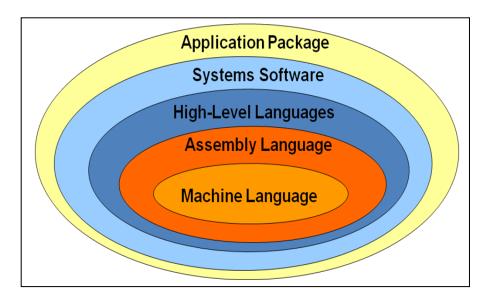

Programmer Changes

Programmers divide into application programmers and systems programmers

Second Generation Software (1959-1965)

High Level Languages

Use English-like statements and make programming easier. Fortran, COBOL, Lisp are examples.


Third Generation Software (1965-1971)

• Systems Software

- utility programs,
- language translators,
- and the operating system, which decides which programs to run and when.

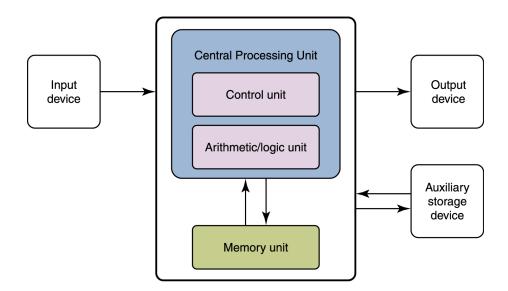
• Separation between Users and Hardware

Computer programmers began to write programs to be used by people who did not know how to program

Fourth Generation Software (1971-1989)

Structured Programming - Pascal, C, C++, Rust. **New Application Software for Users** - Spreadsheets, word processors, database management systems

Fifth Generation Software (1990- present)

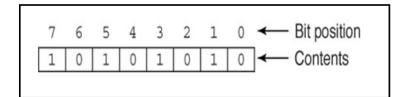

Microsoft - The Windows operating system, and other Microsoft application programs dominate the market

Object-Oriented Design - Based on a hierarchy of data objects (i.e. Java)

World Wide Web - Allows easy global communication through the Internet

New Users -Today's user needs no computer knowledge

Stored-Program Concept



The von Neumann architecture

<u>Memory</u>

Memory is a collection of cells, each with a unique physical address ; Both addresses and contents are in binary

Address	Contents
00000000	11100011
0000001	10101001
:	:
11111100	00000000
11111101	11111111
11111110	10101010
11111111	00110011

Input / Output Devices

Have you ever wondered how information gets into your computer or comes out in a form you can use?

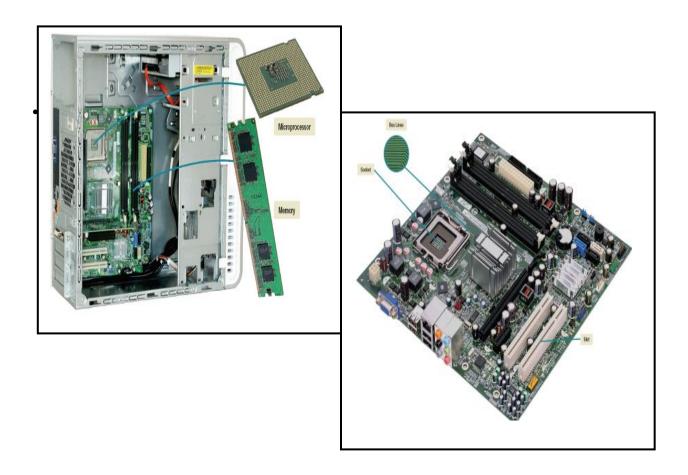
- Input devices convert what we understand into what the system unit can process
- Output devices convert what the system unit has processed into a form that we can understand.

Input Unit

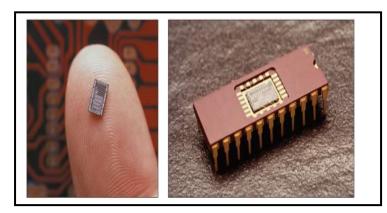
A device through which data and programs from

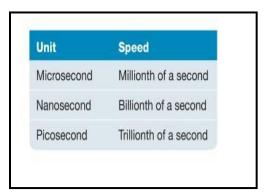
the outside world are entered into the computer

- Keyboard (traditional wireless PAD Keyboards)
- Mouse (Mechanical Optical Wireless) (Trackball – Touch Pads – Pointing or J joysticks – Stylus)
- Scanning devices (Magnetic Card Readers Bar Code Readers – Character Recognition Devices -Webcams – Voice Recognition Systems – Microphone)



System Unit


System Chassis, System Board (Motherboard), Microprocessor, Memory, Socket, Bus Lines, and Expansion Slots


System Board (Main board or motherboard)

Central Processing Unit (CPU)

- Measurement units for processing speed (shown here)
- Two Basic Components
 - Control unit
 - Arithmetic-logic unit (ALU)

Memory :

- Holding area for data, instructions, and information
- Memory is contained on chips connected to the system board

RAM and ROM

RAM stands for **Random Access Memory**

 Inherent in the idea of being able to access each location is the ability to change the contents of each location flash memory or Cache memory

ROM stands for **Read Only Memory**

- The contents is in memory
- locations in ROM can be accessed but cannot be changed
- Contain special instructions
 - Needed to start a computer
 - Give keyboard keys their
 - special capabilities

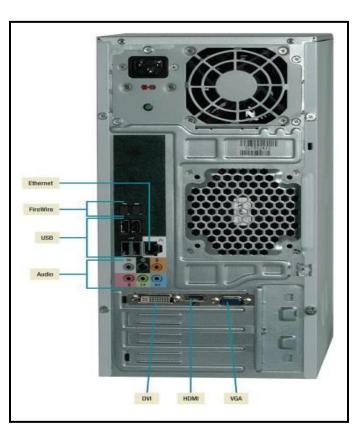
RAM is Volatile, ROM is not

• This means that RAM does not retain its bit configuration when the power is turned off, but ROM does

• Expansion Cards:

- Graphics cards
- Sound cards
- Wireless network cards
- TV tuner cards Allows you to view your favorite TV shows while running other applications such as word

Plug and Play


- Set of specific hardware and software standards developed by Intel, Microsoft, and others
- Creating devices that are able to configure themselves when installed

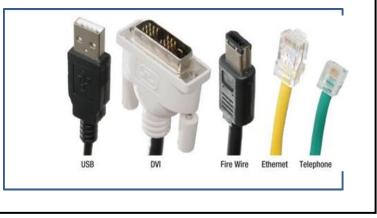
Ports

- Socket for connecting external devices
- Three Types of ports:
 - Standard Ports such as USB ports
 - o Legacy Ports such as Keyboard and mouse ports
 - **Specialized Ports** such as High Definition Multimedia Interface (HDMI)

Standard Ports

- Four common ports
 - \circ VGA
 - USB ports
 - FireWire ports
 - o Ethernet ports

Legacy Ports


- Keyboard and mouse ports
- Game ports

Specialized Ports

- Musical Instrument digital interface (MIDI)
- High Definition Multimedia Interface (HDMI)

Cables

- Used to connect external devices to the system unit via the ports
- One end of the cable is attached to the device and the other end has a connector that is attached to a matching connector on the port

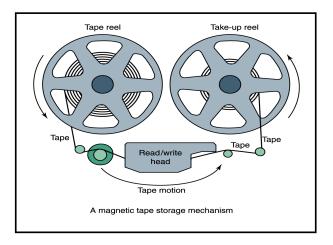
Power Supply

- Computers require direct current (DC)
- DC power provided by converting alternating current (AC) from wall outlets or batteries
- Desktop computers use power supply units
- Notebooks and handhelds use AC adapters

Secondary Storage Devices

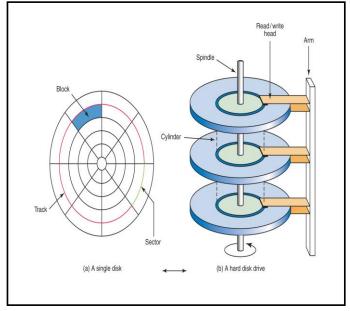
- Because most of main memory is volatile and limited, it is essential that there be other types of storage devices where programs and data can be stored when they are no longer being processed
- Secondary storage devices can be installed within the computer box at the factory or added later as needed

Can you name some of these devices ????


Why is it necessary to have secondary storage devices ???

Magnetic Tape

The first truly mass auxiliary storage device was the magnetic tape drive


Tape drives have a major problem;

can you describe it ???

Magnetic Disks

A read/write head travels across a spinning magnetic disk, retrieving or recording data – Floppy Desk (1970's), and Zip Drive (Late 1970's / early 198-'s).

Compact Disks :

A CD drive uses a laser to read information stored optically on a plastic disk

- CD-ROM is A compact disk Read-Only Memory .
- CD-DA digital audio.
- CD-WORM write once, read many
- RW or RAM both read from and written to
- DVD stands for Digital Video Disk has higher storage capacity than CD-ROM. used for storing audio and video

Flash Memory

- Nonvolatile
- Can be erased and rewritten
- Flash memory offers a combination of the features of RAM and ROM.
- Flash memory is used for a wide of range of applications.
- If changes are made to the computer system, these changes are reflected in flash memory

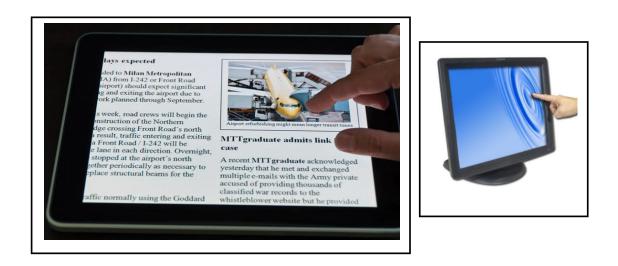
Output Unit

A device through which results stored in the computer memory are made available to the outside world

• Printers and video display terminals

Output Devices

- Processed data or information
- Types of output
 - o Text
 - Graphics/Photos
 - \circ Audio & video
- Examples of Output devices
 - \circ Monitors
 - \circ Printers
 - Other Devices



Monitors

- Known as screens or display screens
- Output referred to as soft copy

Touch Screens

• **Touch screen** A computer monitor that can respond to the user touching the screen with a stylus or finger

Infrared touch

Printers

- Ink-jet printer
- Laser printer
 - Personal laser printers
 - Shared laser printers
- Thermal printer
- Other printers
 - Dot-matrix printers
 - o Plotters
 - \circ Photo printers
 - \circ Portable printers

Audio-Output Devices

- Translates audio information from the computer into sounds that people can understand
- Common devices
 - \circ Speakers
 - \circ Headphones
- Digital Music Player
 - o iPod

Binary Values and Number Systems, Data Representation.

Electronic Data and Instructions

- Data and instructions are represented electronically
- Two-state system or Binary System
 - Off/On electrical states
 - Characters represented by 0's (off) and 1's (on)
 - Bits
 - Bytes

Numbers

Natural Numbers

Zero and any number obtained by repeatedly adding one to it. Examples: 100, 0, 45645, 32

Negative Numbers

A value less than 0, with a – sign Examples: -24, -1, -45645, -32

Integers

A natural number, a negative number, zero Examples: 249, 0, - 45645, - 32

Rational Numbers

Rational Number is an integer number that can be written as a simple fraction (i.e. as a **ratio** of two integers). Examples: 3/7, -2/5

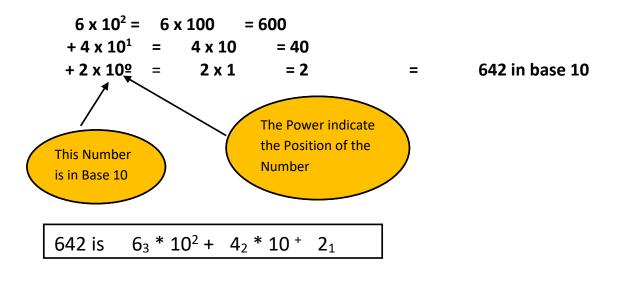
Irrational Numbers

Numbers that cannot be represented by the quotient of two integers Examples: $PI = 3.14159..., e, \sqrt{2}$, etc.

Natural Numbers

How many ones are there in 642?

ls it	600 + 40 + 2 ?
Or is it	384 + 32 + 2 ?
Or maybe	1536 + 64 + 2 ?


We need a base for each number .

The base of a number determines the number of digits and the value of digit positions

Thus 642 is 600 + 40 + 2 in **BASE 10**

Positional Notation

Continuing with our example... 642 in base 10 positional notation is:

What if 642 has the base of 13?

Then		6 x 13 ² + 4 x 13 ¹		6 x 169 4 x 13	= 1014 = 52		
		+ 2 x 13º	=	2 x 1	=	2	
				=	1068	in base 10	
642	in base	13	is	equiva	alent to	1068	in base 10

Decimal Numeral System - Base-10

Decimal numbers uses digits from 0..9. These are the regular numbers that we use. Each digit has an associated value of an integer raised to the power of 10

Example: $2538_{10} = 2 \times 10^3 + 5 \times 10^2 + 3 \times 10^1 + 8 \times 10^0$ **Example:** $724.5_{10} = 7 \times 10^2 + 2 \times 10^1 + 4 \times 10^0 + 5 \times 10^{-1}$

Bases Higher than 10

How are digits in bases higher than 10 represented?

With distinct symbols for 10 and above.

Base 16 has 16 digits: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, and F

Hexadecimal Numeral System - Base-16

Hex numbers uses digits from 0..9 and A..F.

H denotes hex prefix.

Converting Hexadecimal to Decimal

What is the decimal equivalent of the hexadecimal number DEF?

 $D x 16^{2} = 13 x 256 = 3328$ + E x 16¹ = 14 x 16 = 224 + F x 16² = 15 x 1 = 15 = 3567 in base 10

Example : What is the decimal equivalent of the hexadecimal number

(B65F)₁₆ ?

 $(B65F)_{16} = 11 \times 16^3 + 6 \times 16^2 + 5 \times 16^1 + 15 \times 16^0 = (46687)_{10}$

Remember, the digits in base 16 are 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

So far , we have the following :

Decimal is bas	e 10 and has 10 digits:	0,1,2,3,4,5,6,7,8,9
Hexadecimal	is Base 16 has 16 digits:	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, and F

Binary

Binary is base 2 and has 2 digits: 0,1

Each digit has an associated value of 0 or 1 raised to the power of 2.

B denotes binary prefix

Converting Binary to Decimal

What is the decimal equivalent of the binary number 1101110?

1 x 2 ⁶	=	1 x 64	= 64		
+ 1 x 2⁵	=	1 x 32	= 32		
+ 0 x 2 ⁴	=	0 x 16	= 0		
+ 1 x 2 ³	=	1 x 8	= 8		
+ 1 x 2 ²	=	1 x 4	= 4		
+ 1 x 2 ¹	=	1 x 2	= 2		
+ 0 x 2º	=	0 x 1	= 0		
			=	110	in base 10

What is the decimal equivalent of the binary number (11010)₂

Sol:
$$(11010)_2 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = (26)_{10}$$

Converting Decimal to Binary

The first way to convert a decimal number to a binary one is with a table like the one below (if needed you can add more columns - each new column to the left should be twice the value of the preceding one). Then, working from left to right, decide if you need that column's value to make your number. The value for any column you use should be subtracted from the value you are trying to make.

For example, I want to write 155 as a binary number:

```
Do I need 128? Yes, that is less than 155.

155 - 128 = 27: that is what we have left to make

Do I need 64? No - I only have 27 left

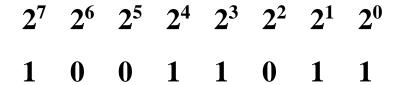
Do I need 16? Yes, that is less than 27.

27 - 16 = 11: that is now what we have left

Do I need 8? Yes, that is less than 11.

11 - 8 = 3

Do I need 4? No - I only have 3 left

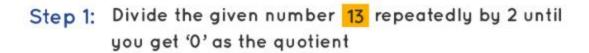

Do I need 2? Yes.

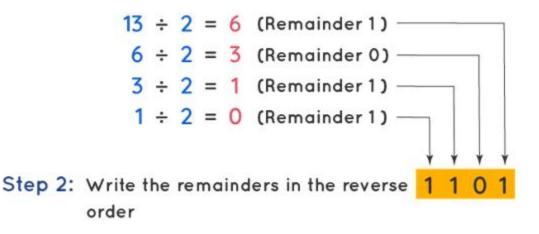
3 - 2 = 1

Do I need 1? Yes.

1 - 1 = 0
```

If we think of each column we used as representing a 1 and each column we didn't as a 0, we get this:


Or written without a table: (10011011)₂


Converting integer :

For example, 46 in base 2 is 101110₂

2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
32	16	8	4	2	1
1	0	1	1	1	0

Another way to Convert from Decimal to Binary:

∴ 13 ₁₀ =	1101 ₂
(Decimal)	(Binary)

Or

2 ³	2^{2}	2 ¹	2 ⁰
8	4	2	1
1	1	0	1

Relationship between Bits and Byte \rightarrow 8 bits = 1 Byte.

Name	Abbreviation	# of Bytes	Size
Byte	В	1 = 8 bits	Could hold 1 Character of data
Kilobyte	КВ	1,024 Bytes = 1024 * 8 = 8192 bits	Could hold 1024 Characters of data (half of double spaced typewriter paper = 2 ¹⁰)
Megabyte	МВ	KB * KB = 1,048,576 Bytes	A floppy disk holds 1.4 MB of data – around 768 pages of typed text ~~ 2 ²⁰
Gigabyte	GB	MB * KB = 1,073,741,824 Bytes	Around 786,432 pages of text - Stack of papers that is 262 feet high ~~ 2 ³⁰
Terabyte	ТВ	GB * KB = 1,099,511,627,776 Bytes	Stack of typewritten pages that is almost 51 miles high ~~ 2 ⁴⁰
Petabyte	РВ	TB * KB = 1,125,899,906,842,624 Bytes	Stack of typewritten pages that is almost 52,000 miles high – about one-fourth distance from the earth to the moon.

The number of bits in a word determines the word length of the computer, but it is usually a multiple of 8

- 32-bit machines
- 64-bit machines etc.

Binary Coded Decimal (BCD)

Binary coded decimal (BCD) is a system of writing numerals that assigns a four-digit <u>binary</u> code to each digit 0 through 9 in a <u>decimal</u> (base-10) numeral. The four-<u>bit</u> BCD code for any single base-10 digit is its representation in binary notation, as follows:

 $0 = 0000 \\
1 = 0001 \\
2 = 0010 \\
3 = 0011 \\
4 = 0100 \\
5 = 0101 \\
6 = 0110 \\
7 = 0111 \\
8 = 1000 \\
9 = 1001$

Numbers larger than 9, having two or more digits in the decimal system, are expressed digit by digit. For example, the BCD rendition of the base-10 number 1895 is

0001 1000 1001 0101

The binary equivalents of 1, 8, 9, and 5, always in a four-digit format, go from left to right.

Example : $(791)_{10} = (0111 \ 1001 \ 0001)_{BCD}$

Note : BCD was used in some of the early decimal computers, as well as the IBM System/360 series systems.

Warning: Conversion or Coding?

Do NOT mix up:

- Conversion of a decimal number to a binary number
- With coding a decimal number with a binary code.

13 ₁₀ = 1101 ₂		(This is conversion)
13	⇔0001 0011	(This is coding)

ASCII Character Code

<u>A</u>merican <u>S</u>tandard <u>C</u>ode for <u>I</u>nformation <u>I</u>nterchange This code is a popular code used to represent information sent as character-based data (like this presentation).

It uses 7-bits to represent:

- 94 Graphic printing characters.
- 34 Non-printing characters

Some non-printing characters are used for text format (e.g. BS = Backspace, CR = carriage return)

Other non-printing characters are used for record marking and flow control (e.g. STX and ETX start and end text areas).

ASCII Table :

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Dec Hex	Oct	Chr	Dec Hex	Oct	HTML	Chr	Dec	Hex	Oct	HTML	Chr	Dec	Hex	Oct	HTML	Chr
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							Space			100	@	@			140	`	
3 3 003 End of Text 35 23 043 # # 67 43 103 C C 99 63 143 c c 4 4 004 End of Transmission 36 24 044 \$ \$ 68 44 104 D D 100 64 144 d d 5 5 005 Enquiry 37 25 045 ! & 69 45 105 E E 101 65 145 e e 6 6 006 Acknowledgment 38 26 046 ! & 70 46 106 H H 102 66 146 g g 7 7 007 Bell 39 27 047 ' ' 71 47 107 8#071; G 103 67 147 g g 8 8 010 Backspace 40 28 050 Ƒ ' 73 49 111 I I 106 6A 152 j j 11 8 013 Vertical Tab 43 28 053 + - 76 4C 114 L L 108 6C 156 n n 12 C 014 Form fe							1			101	A	Α					
4 4 004 End of Transmission 36 24 044 \$ \$ 68 44 104 D D 100 64 144 d d 5 5 005 Enquiry 37 25 045 % % 69 45 105 < E 101 65 145 e e 6 6 006 Acknowledgment 38 26 046 & % 70 46 106 F F 102 66 146 g g 7 7 007 Bell 39 27 047 ࿇ ' 71 47 107 G 61 03 67 147 g g 8 010 Backspace 40 28 050 ((72 48 110 H H 104 68 150 h h 9 011 Horizontal Tab 41 29 051 Ɣ , 75 48 113 K K 107 66 153 k k 12 C 014 Form feed 44 2C 054 Ɣ , 76 4C 114 L L 108 6C 153 k k 13 D 015 Carriage return 45 2D <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>"</td> <td></td> <td></td> <td>102</td> <td>B</td> <td></td> <td></td> <td></td> <td>142</td> <td>b</td> <td>b</td>							"			102	B				142	b	b
5 5 005 Enquiry 37 25 045 % % 69 45 105 E E 101 65 145 e e 6 6 006 Acknowledgment 38 26 046 & & 70 46 106 F F 102 66 146 f f 7 7 007 Bell 39 27 047 ' '' 71 107 H H 104 68 150 h h 9 011 Horizontal Tab 41 29 051 * '' 73 49 111 I I 105 69 151 i i 10 A 012 Line feed 42 A 28 * '' 74 4A 112 J J 106 6A 152 j i 11 13 015 h i 13 015 h n 105 55 / ''												С					-
6 6 006 Acknowledgment 38 26 046 & & 70 46 106 F F 102 66 146 f f 7 7 007 Bell 39 27 047 ' ' 71 47 107 G G 103 67 147 g g 8 8 010 Backspace 40 28 050 ((72 48 110 G G 103 67 147 g g 9 011 Horizontal Tab 41 29 051) , 74 41 12 J J 106 6A 152 j j 11 B 013 Vertical Tab 43 28 053 , , 76 48 113 K K 107 6B 153 k k 113 L L 108 6C 154 l l 135 L L <t< td=""><td></td><td></td><td>End of Transmission</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td></t<>			End of Transmission									_					
7 7 007 Bell 39 27 047 ' ' 71 47 107 G G 103 67 147 g g 8 8 010 Backspace 40 28 050 ((72 48 110 H H 104 68 150 h h 9 9 011 Horizontal Tab 41 29 051)) 73 74 41 108 I I 105 69 151 i i 10 A 012 Line feed 42 2A 052 * * 74 4A 112 I I 106 6A 152 j j 11 B 013 Vertical Tab 43 2B 053 , , 76 4C 114 K K I07 6B 153 l I 13 D 015 Carriage return 45 2D 055 - - 77 4D 115 M M 109 6D 155 l I I I I I I I I I I I I <td></td> <td>005</td> <td>Enquiry</td> <td></td> <td>045</td> <td>%</td> <td>%</td> <td>69</td> <td>45</td> <td>105</td> <td>E</td> <td>E</td> <td>101</td> <td>65</td> <td>145</td> <td>e</td> <td>е</td>		005	Enquiry		045	%	%	69	45	105	E	E	101	65	145	e	е
8 8 010 Backspace 40 28 050 ((72 48 110 H H 104 68 150 h h 9 9 011 Horizontal Tab 41 29 051)) 73 49 111 I I 105 69 151 i i 10 A 012 Line feed 42 2A 052 * * 74 4A 112 J J 106 6A 152 j j 11 B 013 Vertical Tab 43 2B 053 , , 76 4C 114 L L 108 6C 155 l I 13 D 015 Carriage return 45 2D 055 . . 78 4E 116 M M 109 6D 155 n n 14 E 016 Shift Out 46 2E 056 / / 79 4F 117 O O 111 6F 157 o o 16 100 2D 131 161 1							8	70	46	106	F	F	102	66	146	f	f
9 9 011 Horizontal Tab 41 29 051)) 73 49 111 I I 105 69 151 i i 10 A 012 Line feed 42 2A 052 * * 74 4A 112 I I 106 6A 152 j j 11 B 013 Vertical Tab 43 2B 053 + + 75 4B 113 K K 107 6B 153 l I 13 D 015 Carriage return 45 2D 055 - - 77 4D 115 M M 109 6D 155 m m 14 E 016 Shift Out 46 2E 056 / / 79 4F 117 M M 109 6D 155 m m 15 F 017 Shift In 47 2F 057 / / 79 4F 117 O O 111 6F 157 o o 16 10 020 Data Link Escape 48 30 060 1 1 81 51 121 S S 113 71 161 q q 181 2022 Device Control 1 49 31 061 1 1	77	007	Bell	39 27	047	'	1	71	47	107	G	G	103	67	147	g	g
10 A 012 Line feed 42 2A 052 * * 74 4A 112 J J 106 6A 152 j j 11 B 013 Vertical Tab 43 2B 053 + + 75 4B 113 J L 106 6A 152 j j 12 C 014 Form feed 44 2C 054 , , 76 4C 114 L L 108 6C 154 l I 13 D 015 Carriage return 45 2D 055 . . 77 4D 115 M M 109 6D 155 m m 14 E 016 Shift Out 46 2E 056 . . 78 4E 116 N N 110 6E 156 n n 15 F 017 Shift In 47 2F 057 / / 79 4F 117 O O 111 6F 157 o o 16 10 020 Data Link Escape 48 30 060 1 1 81 51 121 Q Q 113 71 161 q q 18 12 022 Device Control 2 50 32 062<	88	010	Backspace	40 28	050	((72	48	110	H	Н	104	68	150	h	h
11 B 013 Vertical Tab 43 2B 053 + + 75 4B 113 K K 107 6B 153 k k 12 C 014 Form feed 44 2C 054 , , 76 4C 114 K K 108 6C 154 l I 13 D 015 Carriage return 45 2D 055 - - 77 4D 115 M M 109 6D 155 m m 14 E 016 Shift Out 46 2E 056 . . 78 4E 116 N N 110 6E 155 n n 15 F 017 Shift In 47 2F 057 / / 79 4F 117 O O 111 6F 157 o o 16 10 020 Data Link Escape 48 30 060 0 0 80 50 120 R Q 113 71 161 q q 18 12 022 Device Control 2 50 32 062 2 2 82 52 122 R R 114 72 162 r r r 19 13 023 Device Control 4	99	011	Horizontal Tab	41 29	051))	73	49	111	I	I	105	69	151	i	i
12 C 014 Form feed 44 2C 054 , , 76 4C 114 L L 108 6C 154 l I 13 D 015 Carriage return 45 2D 055 - - 77 4D 115 M M 109 6D 155 m m 14 E 016 Shift Out 46 2E 056 . . 78 4E 116 N N 110 6E 156 n n 15 F 017 Shift In 47 2F 057 / / 79 4F 117 O O 111 6F 157 o o 16 10 020 Data Link Escape 48 30 060 1 1 81 51 121 Q Q 113 71 161 q q 18 12 022 Device Control 2 50 32 062 2 2 82 52 122 R R 114 72 162 r r r 19 13 023 Device Control 3 51 33 063 3 3 83 53 123 S S 115 73 163 o s s 20 14 024 Device Control 4 52 34 06	10 A	012	Line feed	42 2A		*	*	74	4A	112	J	J	106	6A	152	j	j
13 D 015 Carriage return 45 2D 055 - - 77 4D 115 M M 109 6D 155 m m 14 E 016 Shift Out 46 2E 056 . . 78 4E 116 N N 110 6E 155 o n 15 F 017 Shift In 47 2F 057 / / 79 4F 117 O O 111 6F 157 o o 16 10 020 Data Link Escape 48 30 060 0 0 80 50 120 P P 112 70 160 p p 17 11 021 Device Control 1 49 31 061 Ɣ 1 81 51 121 Q Q 113 71 161 q q 18 12 022 Device Control 2 50 32 062 2 2 82 52 122 R R 114 72 162 r r 19 13 023 Device Control 4 52 34 064 4 4 84 54 124 T T 116 74 &164 t t 11 7 75	11 B	013	Vertical Tab	43 2B	053	+	+	75	4B	113	K	K	107	6B	153	k	k
14 E 016 Shift Out 46 2E 056 . . 78 4E 116 N N 110 6E 156 n n 15 F 017 Shift In 47 2F 057 / / 79 4F 117 O O 111 6F 157 o o 16 10 020 Data Link Escape 48 30 060 0 0 80 50 120 P P 112 70 160 p p 17 11 021 Device Control 1 49 31 061 ࿑ 1 81 51 121 Q Q 113 71 161 q q 18 12 022 Device Control 2 50 32 062 2 2 82 52 122 R R 114 72 162 r r 19 13 023 Device Control 4 52 34 064 4 4 84 54 124 T T 116 74 & 164 t t 21 15 025 Negative Ack. 53 35 065 5 5 85 55 125 V U 117 75 165 u u 22 16 026 Synchron	12 C	014	Form feed	44 2C	054	,	,	76	4C	114	L	L	108	6C	154	l	1
15 F 017 Shift In 47 2F 057 / / 79 4F 117 O 0 111 6F 157 o o 16 10 020 Data Link Escape 48 30 060 0 0 80 50 120 P P 112 70 160 p p 17 11 021 Device Control 1 49 31 061 1 1 81 51 121 Q Q 113 71 161 q q 18 12 022 Device Control 2 50 32 062 2 2 82 52 122 S S 114 72 162 r r 19 13 023 Device Control 4 52 34 064 4 4 84 54 124 S S 115 73 163 s s 20 14 024 Device Control 4 52 34 065 5 5 85 55 125 U U 117 75 165 u u 21 6 026 Synchronous	13 D	015	Carriage return	45 2D	055	-	+	77	4D	115	M	Μ	109	6D	155	m	m
16 10 020 Data Link Escape 48 30 060 0 0 80 50 120 P P 112 70 160 p p 17 11 021 Device Control 1 49 31 061 1 1 81 51 121 Q Q 113 71 161 q q 18 12 022 Device Control 2 50 32 062 2 2 82 52 122 R R 114 72 162 r r 19 13 023 Device Control 4 52 34 064 4 4 84 54 124 S S 115 73 163 s s 20 14 024 Device Control 4 52 34 066 5 5 85 55 125 X U 117 75 165 u u 21 16 026 Synchronous idle 54	14 E	016	Shift Out	46 2E	056	.		78	4E	116	N	Ν	110	6E	156	n	n
17 11 021 Device Control 1 49 31 061 1 1 81 51 121 Q Q 113 71 161 q q 18 12 022 Device Control 2 50 32 062 2 2 82 52 122 R R 114 72 162 r r 19 13 023 Device Control 4 52 34 064 4 4 84 54 124 S S 115 73 163 s s 20 14 024 Device Control 4 52 34 064 4 4 84 54 124 T T 116 74 164 t t 21 50 S mediation 53 35 065 7 7 87 57 127 W W 119 77 167 t t 21 10 G Synchronous idle	15 F	017	Shift In	47 2F	057	/	1	79	4F	117	O	0	111	6F	157	o	0
18 12 022 Device Control 2 50 32 062 2 2 82 52 122 R R 114 72 162 r r 19 13 023 Device Control 3 51 33 063 3 3 83 53 123 S S 115 73 163 s s 20 14 024 Device Control 4 52 34 064 4 4 84 54 124 S S 115 73 163 u u 21 15 025 Negative Ack. 53 35 065 7 7 87 57 127 W W 119 77 165 o u 22 16 026 Synchronous idle 54 36 066 7 7 87 57 127 W W 119 77 167 p w 24 18 030 Cancel	16 10	020	Data Link Escape	48 30	060	0	0	80	50	120	P	Ρ	112	70	160	p	р
18 12 022 Device Control 2 50 32 062 2 2 82 52 122 R R 114 72 162 r r 19 13 023 Device Control 3 51 33 063 3 3 83 53 123 S S 115 73 163 s s 20 14 024 Device Control 4 52 34 064 4 4 84 54 124 T T 116 74 164 t t 21 15 025 Negative Ack. 53 35 065 7 7 87 71 177 k#087; W 119 77 165 r v 21 10 025 Negative Ack. 53 35 066 7 7 87 71 72 W W 119 77 167 r v 23 17 027 End of Trans. Block <td>17 11</td> <td>021</td> <td>Device Control 1</td> <td>49 31</td> <td>061</td> <td>1</td> <td>1</td> <td>81</td> <td>51</td> <td>121</td> <td>Q</td> <td>Q</td> <td>113</td> <td>71</td> <td>161</td> <td>q</td> <td></td>	17 11	021	Device Control 1	49 31	061	1	1	81	51	121	Q	Q	113	71	161	q	
20 14 024 Device Control 4 52 34 064 4 4 84 54 124 T T 116 74 164 t t 21 15 025 Negative Ack. 53 35 065 5 5 85 55 125 U U 117 75 165 u u 22 16 026 Synchronous idle 54 36 066 7 7 87 57 127 W W 119 77 167 w w 23 17 027 End of Trans. Block 55 37 067 7 7 87 57 127 W W 119 77 167 w w 24 18 030 Cancel 56 38 070 9 9 89 59 131 X X 120 78 170 x x 25 19 031 End of Medium	18 12	022	Device Control 2	50 32	062	2	2	82	52	122	R		114	72	162	r	r
20 14 024 Device Control 4 52 34 064 4 4 84 54 124 T T 116 74 164 t t 21 15 025 Negative Ack. 53 35 065 5 5 85 55 125 U U 117 75 165 u u 22 16 026 Synchronous idle 54 36 066 7 7 87 57 127 W W 119 77 167 w w 24 18 030 Cancel 56 38 070 8 8 88 58 130 X X 120 78 170 x x 25 19 031 End of Medium 57 39 071 9 9 89 59 131 Y Y 121 79 171 x x 26 1A 032 Substitute 58 <td>19 13</td> <td>023</td> <td>Device Control 3</td> <td>51 33</td> <td>063</td> <td>3</td> <td>3</td> <td>83</td> <td>53</td> <td>123</td> <td>S</td> <td>S</td> <td>115</td> <td>73</td> <td>163</td> <td>s</td> <td>S</td>	19 13	023	Device Control 3	51 33	063	3	3	83	53	123	S	S	115	73	163	s	S
22 16 026 Synchronous idle 54 36 066 6 6 86 56 126 V V 118 76 166 v v 23 17 027 End of Trans. Block 55 37 067 7 7 87 57 127 W W 119 77 167 w w 24 18 030 Cancel 56 38 070 8 8 88 58 130 X X 120 78 170 x x 25 19 031 End of Medium 57 39 071 9 9 89 59 131 Y Y 121 79 171 y y 26 1A 032 Substitute 58 3A 072 : : 90 5A 132 Z Z 122 7A 172 z z 27 1B 033 Escape 59 3B 073 ; ; 90 5A 132 Z Z 123 7B 173 z z 28 1C 034 File Separator 60 3C 074 < 92 5C 134 \ 124 7C 174 2 29 1D 035 &Group Separator 61 3D<	20 14	024	Device Control 4	52 34	064	4	4	84	54			Т	116	74	164	t	t
22 16 026 Synchronous idle 54 36 066 6 6 86 56 126 V V 118 76 166 v v 23 17 027 End of Trans. Block 55 37 067 7 7 87 57 127 W W 119 77 167 w w 24 18 030 Cancel 56 38 070 8 8 88 58 130 X X 120 78 170 x x 25 19 031 End of Medium 57 39 071 9 9 89 59 131 X Y 121 79 171 y y 26 1A 032 Substitute 58 3A 072 : : 90 5A 132 Z Z 122 7A 172 z z 27 1B 033 Escape 59 3B 073 ; ; 91 5B 133 [[123 7B 173 z z 28 1C 034 File Separator 60 3C 074 2 92 5C 134 \ 124 7C 174 [291 D 035 Group Separator 61 3D </td <td>21 15</td> <td>025</td> <td>Negative Ack.</td> <td>53 35</td> <td>065</td> <td>5</td> <td>5</td> <td>85</td> <td>55</td> <td>125</td> <td>U</td> <td>U</td> <td>117</td> <td>75</td> <td>165</td> <td>u</td> <td>u</td>	21 15	025	Negative Ack.	53 35	065	5	5	85	55	125	U	U	117	75	165	u	u
23 17 027 End of Trans. Block 55 37 067 7 7 87 57 127 W W 119 77 167 w w 24 18 030 Cancel 56 38 070 8 8 88 58 130 X X 120 78 170 x x 25 19 031 End of Medium 57 39 071 9 9 89 59 131 Y Y 121 79 171 y y 26 1A 032 Substitute 58 3A 072 : : 90 5A 132 Z Z 122 7A 172 y y 26 1A 032 Substitute 58 3A 072 : : 90 5A 132 Z Z 122 7A 172 z z z 27 1B 033 Escape <t< td=""><td></td><td>026</td><td></td><td>54 36</td><td>066</td><td></td><td>6</td><td>86</td><td>56</td><td>126</td><td>V</td><td>V</td><td>118</td><td>76</td><td>166</td><td>v</td><td>v</td></t<>		026		54 36	066		6	86	56	126	V	V	118	76	166	v	v
24 18 030 Cancel 56 38 070 8 8 88 58 130 X X 120 78 170 x x 25 19 031 End of Medium 57 39 071 9 9 89 59 131 Y Y 121 79 171 y y 26 1A 032 Substitute 58 3A 072 : : 90 5A 132 Z Z 122 7A 172 z z 27 1B 033 Escape 59 3B 073 ; ; 91 5B 133 Z Z 122 7A 172 z z 28 1C 034 File Separator 60 3C 074 < 92 5C 134 \ L24 7C 174 { { 29 1D 035 Group Separator 61 3D 075 ʕ = 93 5D 135] 126 7E 176 { 2 31 E 036 , 126 7E 176 ~ </td <td>23 17</td> <td>027</td> <td></td> <td>55 37</td> <td>067</td> <td>7</td> <td>7</td> <td>87</td> <td>57</td> <td>127</td> <td>W</td> <td>W</td> <td>119</td> <td>77</td> <td>167</td> <td>w:</td> <td>W</td>	23 17	027		55 37	067	7	7	87	57	127	W	W	119	77	167	w:	W
25 19 031 End of Medium 57 39 071 9 9 89 59 131 Y Y 121 79 171 y y 26 1A 032 Substitute 58 3A 072 : : 90 5A 132 Z Z 122 7A 172 z z 27 1B 033 Escape 59 3B 073 ; ; 91 5B 133 [[123 7B 173 z z 28 1C 034 File Separator 60 3C 074 <<		030		56 38	070		8					X	120	78			x
26 1A 032 Substitute 58 3A 072 : : 90 5A 132 Z Z 122 7A 172 z Z 27 1B 033 Escape 59 3B 073 ; ; 91 5B 133 [[123 7B 173 z Z 28 1C 034 File Separator 60 3C 074 < <	25 19	031	End of Medium	57 39	071		9	89	59			Y	121	79			
27 1B 033 Escape 59 3B 073 ; ; 91 5B 133 [[123 7B 173 { { 28 1C 034 File Separator 60 3C 074 < <		032	Substitute	58 3A			:	90	5A			Z	122	7A			
28 1C 034 File Separator 60 3C 074 < <							:					[{
29 1D 035 Group Separator 61 3D 075 = = 93 5D 135]] 125 7D 175 } } 30 1E 036 Record Separator 62 3E 076 > > 94 5E 136 ^ ^ 126 7E 176 ~ ~ 31 1F 037 Unit Separator 63 3F 077 ? ? 95 5F 137 _ 127 7F 177 Del							<					Ň					ì
30 1E 036 Record Separator 62 3E 076 > > 94 5E 136 ^ ^ 126 7E 176 ~ ~ 31 1F 037 Unit Separator 63 3F 077 ? ? 95 5F 137 _ 127 7F 177 Del						/						i					}
31 1F 037 Unit Separator 63 3F 077 ? 95 5F 137 _ 127 7F 177  Del												^					~
																	Del
				00 01			•			207		-					
															asen	Star Stars	

Gates and Circuits

Computers and Electricity

Gate A device that performs a basic operation on electrical signals

Circuits Gates combined to perform more complicated tasks

There are three different, but equally powerful, notational methods for describing the behavior of gates and circuits

- 1. Boolean expressions
- 2. Logic diagrams
- 3. Truth tables

Boolean Expressions: Expressions in Boolean algebra, a mathematical notation for expressing two-valued logic

This algebraic notation are an elegant and powerful way to demonstrate the activity of electrical circuits

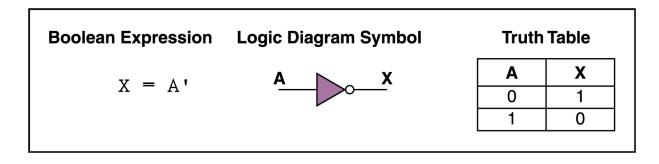
Logic Diagram: A graphical representation of a circuit - Each type of gate is represented by a specific **graphical** symbol

Truth Table: A **table** showing all possible input value and the associated output values

<u>Gates</u>

Let's examine the processing of the following six types of gates

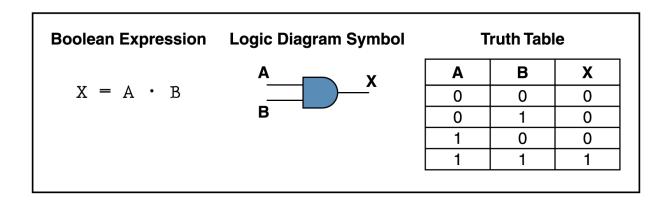
- 1. NOT
- 2. AND
- 3. OR
- 4. XOR
- 5. NAND
- 6. NOR


Typically, logic diagrams are black and white, and the gates are distinguished only by their shape

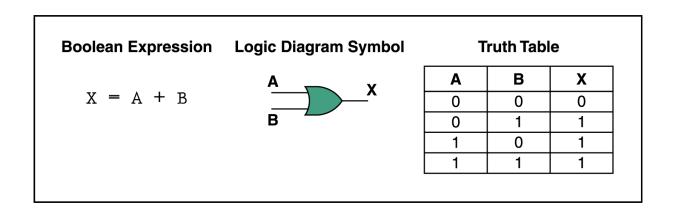
NOT Gate

A NOT gate accepts one input value and produces one output value

By definition, if the input value for a NOT gate is 0, the output value is 1, and if the input value is 1, the output is 0

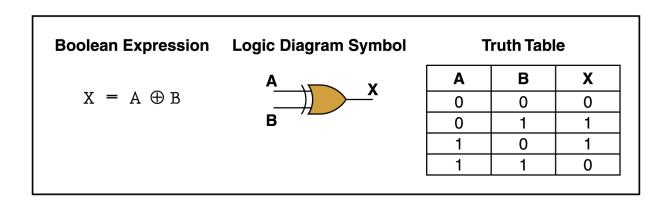

A NOT gate is sometimes referred to as an *inverter* because it inverts the input value

AND Gate


An AND gate accepts **two** input signals.

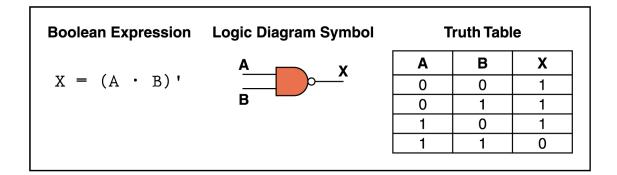
If the two input values for an AND gate are **both** 1, the output is 1; otherwise, the output is 0

OR Gate


If the two input values are **<u>both</u>** 0, the output value is 0; otherwise, the output is 1

XOR Gate

XOR, or *exclusive* OR, gate

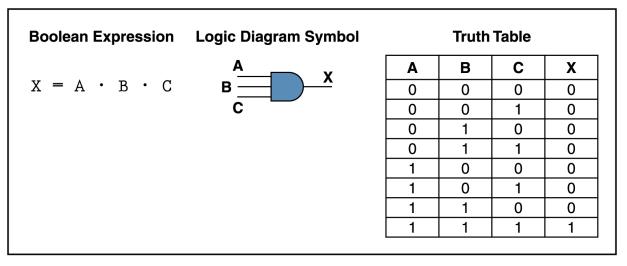

- An XOR gate produces 0 if its **two inputs are the same**, and 1 otherwise
- <u>Note</u> the difference between the XOR gate and the OR gate; they differ only in one input situation
- When both input signals are 1, the OR gate produces a 1 and the XOR produces a 0

NAND and NOR Gates

The NAND and NOR gates are essentially the **<u>opposite</u>** of the AND and OR gates, respectively

NAND Gate

NOR Gate


Boolean Expression	Logic Diagram Symbol	т	ruth Tabl	e
	A X	Α	В	X
X = (A + B)'		0	0	1
	В	0	1	0
		1	0	0
		1	1	0

Review of Gate Processing

- A **<u>NOT</u>** gate **<u>inverts</u>** its single input value
- An <u>AND</u> gate produces 1 if both input values are 1
- An **<u>OR</u>** gate produces 1 if one or the other or both input values are 1
- An <u>XOR</u> gate produces 1 if one or the other (but not both) input values are
 1
- A **<u>NAND</u>** gate produces the opposite results of an <u>AND</u> gate
- A <u>NOR</u> gate produces the <u>opposite</u> results of an <u>OR</u> gate

Gates with More Inputs

- Gates can be designed to accept three or more input values
- A three-input AND gate, for example, produces an output of 1 only if all input values are 1

